Canakinumab

A Phase II, Open-Label, Study of Subcutaneous Canakinumab, an Anti-IL-1β Human Monoclonal Antibody, for Patients With Low or Int-1 Risk IPSS/IPSS-R Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia

What's the purpose of the trial?

This phase II trial studies how well canakinumab works for the treatment of low- or intermediate-risk myelodysplastic syndrome or chronic myelomonocytic leukemia. Canakinumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread.
Trial status

Accepting patients

Phase
Phase 2
Enrollment
60
Last Updated
3 months ago
Am I Eligible

Participating Centers

There is one center participating in this trial. Enter a location below to view the distance.

Experimental Treatments

Learn more about the experimental treatments being evaluated in this clinical trial.

  • Canakinumab is an IgGκ monoclonal antibody that is used to treat several different indications.

Arms / Cohorts

Explore eligibility, treatments and learn more about potential cohorts.

Accepting patients

Cohort 1

Accepting patients

Cohort 2

Accepting patients

Cohort 3

Published Results

Explore published results and other resources associated with this clinical trial (including press releases, news articles and videos).

A Phase 2 Study of Canakinumab in Patients with Lower-Risk Myelodysplastic Syndromes or Chronic Myelomonocytic Leukemia

Findings: Between August 2020 and May 2023, 27 patients were enrolled in the phase 2 portion of this study, and 2 patients failed screening. The median age was 74 years with 15 (60%) male patients; 20 patients (80%) were post-hypomethylating agent failure with a median number of prior lines of therapy of 2 (1-5). Transfusion dependency was observed in 24 patients (96%) prior to canakinumab initiation. Fourteen (56%) patients showed normal karyotype. IPSS-R stratification revealed an intermediate-2 risk in 12 (48%) patients and a high risk in one (4%). The most common mutations were SF3B1 (40%), TET2 (32%), DNMT3A (28%), and RUNX1 (24%). IPSS-M risk score was calculated for 24 cases showing one (4%) very low (VL), four (16%) low (L), 14 (16%) moderate low (ML), eight (32%) moderate high (MH), five (20%) high (H), and two (8%) very high (VH) risk categories. Canakinumab was well tolerated and no drug-related toxicities were observed. One death due to sepsis, which was deemed not treatment-related, occurred on the study drug. Out of 23 evaluable patients, the overall response rate was 17·4%, with erythroid and platelet hematological improvement (HI-E and HI-P, respectively) confirmed in 3 (13.0%) patients and 1 (4.3%) patient, respectively. Thirteen patients had stable disease (56·5%) and 6 (26·1%) progressed during therapy, 1 of which transformed to AML (Fig. 1). TI was achieved in 3 patients (median DoR 8·53 months (95% CI 0·41-16·1) and 2 of them maintained TI for over 12 months. With a median follow-up time of 22·6 months (95% CI 15·0-29·4), median OS was 17·3 months (95% CI 14·3-not estimable). We performed separate univariate analyses to evaluate any associations between the IPSS-M and OS/PFS. The median OS in patients with higher-risk MDS by IPSS-M (MH, H, VH) was 15·0 months vs 29·4 months in the lower-risk disease by IPSS-M (VL, L, ML) group (p=0·12). Interestingly, statistically significant findings were observed with 1-year PFS when stratifying patients into higher vs lower risk MDS by IPSS-M (64·3% vs 100·0%, respectively; p=0·022, Fig. 2).

Conclusion: In this cohort of MDS patients who had experienced multiple lines of prior therapy and exhibited high-molecular-complexity, canakinumab showed limited efficacy (HI 17.3%). Nevertheless, canakinumab showed a good safety profile and yielded sustained long-term responses in patients with single somatic driver mutation in TET2 or DNMT3A. This suggests that clonal complexity, and therefore disease burden, may be a determining factor in response to canakinumab. Therefore, we have amended the protocol of a phase 1/2 clinical trial evaluating the safety and activity of canakinumab in clonal cytopenia of unknown significance (CCUS) and low-molecular complexity MDS patients. Our results will clarify the role of IL-1β signaling in MDS initiation and progression.

7 months ago Read more

Real People. Real Support.

Need help connecting with this clinical trial? We're here to help!

Print this trial to share with your doctor.

We can help answer any questions and connect you (or your patient) with the study team.

Schedule a time that is convenient and we’ll call you to see how we can help you and your patient.